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On Intrinsically Random Z2-Actions on a
Lebesgue Space

M. Courbage' and B. Kaminski?
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It is shown that a Z*-action on a Lebesgue space is intrinsically random (/R) iff
it is a Kolmogorov action (K-action). As a consequence we obtain the fact that
the Z2-action defined by the Lorentz gas is an IR-action and the ZZ-action
defined by the ideal gas is not an /R-action.
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1. INTRODUCTION

The concept of a weak (strong) intrinsically random Z2-action on a
Lebesgue space has been introduced in ref. 2 and it is shown that any
Kolmogorov (Bernoulli) Z*-action is intrinsically weak (strong) random.

An important role in the definition of an intrinsically random (weak
and strong) action is played by a continuity condition (the condition (b) of
Definition 2 in ref. 2) which has no corresponding analogue in the case of
intrinsically random Z-actions.

It was a natural question whether an intrinsically random (weak or
strong) Z>2-action is a K-action.

In this paper we first modify our definition of an IWR-action in a
similar way as in ref. 4 (for Z-actions). By this we replace the continuity
condition by a more natural one. We call the actions obtained thereby as
intrinsically random.

The main result of our paper says that the class of /R-actions coincides
with the class of K-actions.
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Goldstein has shown in ref. 3 that the Z2-action defined by the
Lorentz gas is a K-system and that the Z*action defined by the ideal gas
has zero entropy.

Thus from our result follows that the first Z*-action is an IR-action
and the second is not an /R-action.

2. RESULT

Let (X, 4, ) be a Lebesgue probability space and let A" denote the
trivial o-algebra of X. Let 2 = L} (X, u) stand for the set of all densities,
i.e., measurable functions f > 0 with jX fdu=1.

We denote by Z? the group of two-dimensional integers. Let < be the
lexicographical order of Z> and let II(N) stand for the set of positive
(negative) vectors of Z? with respect to <.

Let @ be a Z*action on (X, %, u), i.e., ® is a homomorphism of
7* into the group Aut(X, ) of all measure-preserving automorphisms of
(X, 2, ).

We denote by @¢ the automorphism of (X, 4, i), being the image of
g€ Z? under .

Let U = U, be the Koopman unitary representation of Z* in L*(X, u)
defined by the formula

Usf=fo®%  felX,n), geZ

For a given g-algebra o/ = 4 and a function f e L'(X, u), we denote
by E“f the conditional expectation of f given .o7. In particular, we put

Ef=E“f=[ fdp

We shall use in the sequel the following well known property of con-
ditional expectations.

Uy o E“=E" 7o U, )

where T € Aut(X, u) and U; is the Koopman unitary operator associated
with 7.

For a given finite measurable partition & of X, we denote by A(&, @)
the mean entropy of & with respect to @ and by h(®) the entropy of &.

Now we recall the definition of a K-action of Z? on a Lebesgue
space.”

An ordered pair (A4, B) of subsets of Z? is said to be a cut if they form
a non-trivial partition of Z* and for every g € 4 and h € B we have g < h.
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A cut (4, B) is called a gap if A does not contain a greatest element
and B does not contain a lowest element.

Definition 1. A Z?-action @ is said to be a K-action if there exists a
o-algebra o/ < 4 with

(1) %o <o foreveryge N,

2(ii) the family (@47, g € Z?) is continuous, i.e., for every gap (4, B)
of Z* it holds

\/ st = (| DE,
geAd geB

(i) V,ep2 Pl = B,

@) Nz B = N

A g-algebra o satisfying (i)—(iv) is called a K-g-algebra.

It has been shown in ref. 7 that @ is a K-action iff @ has a completely
positive entropy, i.e., A(&, @) >0 for every non-trivial finite measurable
partition ¢ of X and in ref. 6 that @ is a K-action iff @ is K-mixing.

Definition 1 can be rewritten in a more clear form, by the use of
automorphisms 7 = @ and § = @ generating @, as follows

(i) S'of coA, T ' oAy = of where oy =\ _, S,

) (32 S/ =T7sty,

(i) V2 _ T'ss=2,

W) N, Trsdg=N.

—00

For any linear operator U of L*(X, u) we denote by ker U the kernel
of U.

A linear operator W of L*(X, p) is said to be doubly stochastic if it is
positive, W1 =1and E - W = E, i.e., if it is a Markov operator preserving u.

For a function f defined on IT and taking values in some linear
normed space we write

f(g—»x as g— +©

if for any ¢ > 0 there exists g, € IT with || f(g)—x|| <& for all g > g,.

Definition 2. We say that a generalized sequence (W, geIl) of
linear operators of L*(X, u) tends to equilibrium if it is a semigroup, all
operators W¥, ge Il are doubly stochastic, for any f e 2 the sequence
(|w#f—1||, g € IT) is nonincreasing and Wéf — 1 as g > +oo0.
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Definition 3. A Z?-action @ is called an IR-action if there exists an
operator P of L*(X, u) and a sequence (W, g € IT) tending to equilibrium
such that

(a) P isa positive projection,

(b) Pl=1,

(© Ngez2 ker P o U%= {0},

(d) for any f e L*(X, u) and m € Z we have

lim ”U(m,n) ° W(m,n)f_U(m+1,—n) ° W(m+l,—n)f|| — 0’

(e) for any g e IT the following diagram commutes:

Lz(Xa ﬂ)L’ Lz(Xa ﬂ)

Ugl le

Lz(Xs ﬂ)T’ Lz(Xa ﬂ)

It is easy to check that if @ is an IR-action then it is intrinsically weak
random in the sense od Definition 2 from ref. 2.

Remark 1. It is easy to see that the property of the intrinsical ran-
domness is preserved if we pass from the ordered basis (e;, e,), ¢, = (1, 0),
e, = (0, 1) to another one (e}, €5) by an automorphism A of Z* which pre-
serves the lexicographical order, i.e., the associated matrix of which is of
the form (! {) where r € Z.

Theorem. A Z?-action @ is an IR-action iff it is a K-action.

Proof. Necessity. It has been shown in ref. 4 that (a) and (b) imply
that P is strictly positive and so, by Corollary 3.4 to the representation
theorem from ref. 5, the operator P is in fact a conditional expectation
operator with respect to some g-algebra o7, i.e., P = E“.

We claim that <7 is a K-g-algebra for @.

Let o/, = ®%<o/ and let P =E"%, ge 7°.

Applying the equality (1) it is easy to see that

PE=U*0PoU%, geZ> ©)

In order to check (i) it is enough to show that P®o P = P? for any
g€eN.
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It follows from (2) and (e) that
PfoP=UZ%cPolUtocP=UZ%ocW=2ocP?
=U P oW oP=U7%0PolU®=P5

Now we check (ii’) instead of (ii). Let f e L*(X, u) be <, S™"oA-
measurable. Hence it is of course «/-measurable, i.e., Pf = f.
It follows from (e) and (2) that

[T o w@mf_y-n o grd.-n g
— ||U(°"‘) oW @m 4 Pf—U(l””) oW1, Pf|
= ||U(0’") oPo U‘(o’")f—U(l’_”) oPo U—(l,—n)f"
=P~ f =Pt
=|ES"f—ET L), 1

Hence taking the limit as » — oo and applying (d) and the Doob mar-
tingale convergence theorem we get

Em;“;o s-wf — ET-ldSﬁ

It follows from our assumption that the left hand side is equal to f
and so

f=E""%f,

i.e., f is T~ .o/;-measurable. This means that (ii') and so (ii) is satisfied.
In order to prove (iii) we put

dy=\ o,

ge 7?2
Let fe L*(X, u) © LA X, o4, ), i.e., f is orthogonal to all subspaces

LX(X, o, n), ge 7.
Let g € Z* be arbitrary. Thus for every ¢ € L}(X, u) we have

0=C(f, Pfp) =(P*f, 9).
Therefore P2f = 0 and so (2) gives

UfoPoUtf=0, geZ?
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Hence
PoUsf=0, gez7?

and thus (c) implies f =0.
This means that

LYX, p) = LAX, L, p),

i.e., (iii) is true.

Let o/, =(\ez» ¥, and let fe L*(X, u) be ./_,-measurable. In
order to check (iv) it is enough to show that f is constant.

Since f =max(f, 0)—max(—f,0) we may assume f>0. If Ef =0
then the proof is finished. If not then ¢ =Eife 2 and since (W8, gell)
tends to equilibrium we have

[Wep—1|| -0 as g— +oo. 3)

Let gell. Since o/ , <./, and ¢ is ./ ,-measurable we have
P2 =0¢.
Hence

Wep=WEoPp=PolU B 0Pp=PoUSp=U%cPEp=U"%¢
and so (3) implies
le—1=U%p—1]|—0 as g— +oo.

Therefore ¢ = 1 and so f is constant.

Sufficiency. Let @ be a K-action of Z? on (X, %, u) and let <7 be a
corresponding K-g-algebra.

In order to show that & is an IR-action we consider P=E“ and
We=PoU™% gell. Since of c Pis/, gell the equality (1) implies
{wWs, geIl} is a semigroup.

The properties (a) and (b) are obvious.

It has been checked in ref. 2 that (e) and (f) are also fulfilled where
one should substitute 4 = P.

Now let us suppose f € ker (), .,z PU%. Hence applying (2) we have

PoUSf=Ufo PEf =Ufo0 E%f =0

and therefore E“ f =0, g € Z>. Now the property (iii) and the Doob mar-
tingale convergence theorem say that f =0, i.e., (c) is satisfied.
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In order to check (d) it is enough to assume that m = 0.
For any f € L*(X, u) we have by (1)

[UOD o wOnf_yt-=m o ppd-ng|
=|U% 0 E? o Uy"f—Uy o Us" 0 E? o Uz" o Usf]||
=||ES"™f—ETSf|,  nx>l

Applying (ii") and the Doob theorem mentioned above we get (d).
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