
421

0022-4715/03/0700-0421/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 112, Nos. 1/2, July 2003 (© 2003)

On Intrinsically Random Z 2-Actions on a
Lebesgue Space

M. Courbage1 and B. Kamiński2
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It is shown that a Z2-action on a Lebesgue space is intrinsically random (IR) iff
it is a Kolmogorov action (K-action). As a consequence we obtain the fact that
the Z2-action defined by the Lorentz gas is an IR-action and the Z2-action
defined by the ideal gas is not an IR-action.
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1. INTRODUCTION

The concept of a weak (strong) intrinsically random Z2-action on a
Lebesgue space has been introduced in ref. 2 and it is shown that any
Kolmogorov (Bernoulli) Z2-action is intrinsically weak (strong) random.

An important role in the definition of an intrinsically random (weak
and strong) action is played by a continuity condition (the condition (b) of
Definition 2 in ref. 2) which has no corresponding analogue in the case of
intrinsically random Z-actions.

It was a natural question whether an intrinsically random (weak or
strong) Z2-action is a K-action.

In this paper we first modify our definition of an IWR-action in a
similar way as in ref. 4 (for Z-actions). By this we replace the continuity
condition by a more natural one. We call the actions obtained thereby as
intrinsically random.

The main result of our paper says that the class of IR-actions coincides
with the class of K-actions.



Goldstein has shown in ref. 3 that the Z2-action defined by the
Lorentz gas is a K-system and that the Z2-action defined by the ideal gas
has zero entropy.

Thus from our result follows that the first Z2-action is an IR-action
and the second is not an IR-action.

2. RESULT

Let (X, B, m) be a Lebesgue probability space and let N denote the
trivial s-algebra of X. Let D … L2(X, m) stand for the set of all densities,
i.e., measurable functions f \ 0 with >X f dm=1.

We denote by Z2 the group of two-dimensional integers. Let O be the
lexicographical order of Z2 and let P(N) stand for the set of positive
(negative) vectors of Z2 with respect to O.

Let F be a Z2-action on (X, B, m), i.e., F is a homomorphism of
Z2 into the group Aut(X, m) of all measure-preserving automorphisms of
(X, B, m).

We denote by Fg the automorphism of (X, B, m), being the image of
g ¥ Z2 under F.

Let U=UF be the Koopman unitary representation of Z2 in L2(X, m)
defined by the formula

Ugf=f p Fg, f ¥ L2(X, m), g ¥ Z2.

For a given s-algebra A … B and a function f ¥ L1(X, m), we denote
by EAf the conditional expectation of f given A. In particular, we put

Ef=ENf=F
X

f dm.

We shall use in the sequel the following well known property of con-
ditional expectations.

UT p EA=ET− 1A
p UT (1)

where T ¥ Aut(X, m) and UT is the Koopman unitary operator associated
with T.

For a given finite measurable partition t of X, we denote by h(t, F)
the mean entropy of t with respect to F and by h(F) the entropy of F. (1)

Now we recall the definition of a K-action of Z2 on a Lebesgue
space.(7)

An ordered pair (A, B) of subsets of Z2 is said to be a cut if they form
a non-trivial partition of Z2 and for every g ¥ A and h ¥ B we have g O h.
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A cut (A, B) is called a gap if A does not contain a greatest element
and B does not contain a lowest element.

Definition 1. A Z2-action F is said to be a K-action if there exists a
s-algebra A … B with

(i) FgA … A for every g ¥ N,

(ii) the family (FgA, g ¥ Z2) is continuous, i.e., for every gap (A, B)
of Z2 it holds

I
g ¥ A

FgA=3
g ¥ B

FgA,

(iii) Jg ¥ Z2 FgA=B,

(iv) 4g ¥ Z2 FgA=N.

A s-algebra A satisfying (i)–(iv) is called a K-s-algebra.
It has been shown in ref. 7 that F is a K-action iff F has a completely

positive entropy, i.e., h(t, F) > 0 for every non-trivial finite measurable
partition t of X and in ref. 6 that F is a K-action iff F is K-mixing.

Definition 1 can be rewritten in a more clear form, by the use of
automorphisms T=F (1, 0) and S=F (0, 1) generating F, as follows

(iŒ) S−1A … A, T−1AS … A where AS=J.

n=−. SnA,

(iiŒ) 4+.

n=−. SnA=T−1AS,

(iiiŒ) J+.

n=−. TnAS=B,

(ivŒ) 4+.

n=−. TnAS=N.

For any linear operator U of L2(X, m) we denote by ker U the kernel
of U.

A linear operator W of L2(X, m) is said to be doubly stochastic if it is
positive, W1=1 and E p W=E, i.e., if it is a Markov operator preserving m.

For a function f defined on P and taking values in some linear
normed space we write

f(g) Q x as g Q +.

if for any e > 0 there exists g0 ¥ P with ||f(g) − x|| < e for all g P g0.

Definition 2. We say that a generalized sequence (Wg, g ¥ P) of
linear operators of L2(X, m) tends to equilibrium if it is a semigroup, all
operators Wg, g ¥ P are doubly stochastic, for any f ¥ D the sequence
(||Wgf − 1||, g ¥ P) is nonincreasing and Wgf Q 1 as g Q +..
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Definition 3. A Z2-action F is called an IR-action if there exists an
operator P of L2(X, m) and a sequence (Wg, g ¥ P) tending to equilibrium
such that

(a) P is a positive projection,

(b) P1=1,

(c) 4g ¥ Z2 ker P p Ug={0},

(d) for any f ¥ L2(X, m) and m ¥ Z we have

lim
n Q .

||U (m, n)
p W (m, n)f − U (m+1, −n)

p W (m+1, −n)f||=0,

(e) for any g ¥ P the following diagram commutes:

L2(X, m)ŁP L2(X, m)

U− g
‡ ‡Wg

L2(X, m)Ł
P

L2(X, m).

It is easy to check that if F is an IR-action then it is intrinsically weak
random in the sense od Definition 2 from ref. 2.

Remark 1. It is easy to see that the property of the intrinsical ran-
domness is preserved if we pass from the ordered basis (e1, e2), e1=(1, 0),
e2=(0, 1) to another one (e −

1, e −

2) by an automorphism A of Z2 which pre-
serves the lexicographical order, i.e., the associated matrix of which is of
the form 1 1

r
0
1
2 where r ¥ Z.

Theorem. A Z2-action F is an IR-action iff it is a K-action.

Proof. Necessity. It has been shown in ref. 4 that (a) and (b) imply
that P is strictly positive and so, by Corollary 3.4 to the representation
theorem from ref. 5, the operator P is in fact a conditional expectation
operator with respect to some s-algebra A, i.e., P=EA.

We claim that A is a K-s-algebra for F.
Let Ag=FgA and let Pg=EAg, g ¥ Z2.
Applying the equality (1) it is easy to see that

Pg=U−g
p P p Ug, g ¥ Z2. (2)

In order to check (i) it is enough to show that Pg
p P=Pg for any

g ¥ N.
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It follows from (2) and (e) that

Pg
p P=U−g

p P p Ug
p P=U−g

p W−g
p P2

=U−g
p W−g

p P=U−g
p P p Ug=Pg.

Now we check (iiŒ) instead of (ii). Let f ¥ L2(X, m) be 4.

n=0 S−nA-
measurable. Hence it is of course A-measurable, i.e., Pf=f.

It follows from (e) and (2) that

||U (0, n)
p W (0, n)f − U (1, −n)

p W (1, −n)f||

=||U (0, n)
p W (0, n)

p Pf − U (1, −n)
p W (1, −n)

p Pf||

=||U (0, n)
p P p U−(0, n)f − U (1, −n)

p P p U−(1, −n)f||

=||P−(0, n)f − P−(1, −n)f||

=||ES− nAf − ET− 1SnAf||, n \ 1.

Hence taking the limit as n Q . and applying (d) and the Doob mar-
tingale convergence theorem we get

E4 .

n=0 S− nAf=ET− 1ASf.

It follows from our assumption that the left hand side is equal to f
and so

f=ET− 1ASf,

i.e., f is T−1AS-measurable. This means that (iiŒ) and so (ii) is satisfied.
In order to prove (iii) we put

A.= I
g ¥ Z2

Ag.

Let f ¥ L2(X, m) ı L2(X, A., m), i.e., f is orthogonal to all subspaces
L2(X, Ag, m), g ¥ Z2.

Let g ¥ Z2 be arbitrary. Thus for every j ¥ L2(X, m) we have

0=(f, Pgj)=(Pgf, j).

Therefore Pgf=0 and so (2) gives

U−g
p P p Ugf=0, g ¥ Z2.
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Hence

P p Ugf=0, g ¥ Z2

and thus (c) implies f=0.
This means that

L2(X, m)=L2(X, A., m),

i.e., (iii) is true.
Let A−.=4g ¥ Z2 Ag and let f ¥ L2(X, m) be A−.-measurable. In

order to check (iv) it is enough to show that f is constant.
Since f=max(f, 0) − max(−f, 0) we may assume f \ 0. If Ef=0

then the proof is finished. If not then j= f
Ef ¥ D and since (Wg, g ¥ P)

tends to equilibrium we have

||Wgj − 1|| Q 0 as g Q +.. (3)

Let g ¥ P. Since A−. … A−g and j is A−.-measurable we have
P−gj=j.

Hence

Wgj=Wg
p Pj=P p U−g

p Pj=P p U−gj=U−g
p P−gj=U−gj

and so (3) implies

||j − 1||=||U−gj − 1|| Q 0 as g Q +..

Therefore j=1 and so f is constant.

Sufficiency. Let F be a K-action of Z2 on (X, B, m) and let A be a
corresponding K-s-algebra.

In order to show that F is an IR-action we consider P=EA and
Wg=P p U−g, g ¥ P. Since A … FgA, g ¥ P the equality (1) implies
{Wg, g ¥ P} is a semigroup.

The properties (a) and (b) are obvious.
It has been checked in ref. 2 that (e) and (f ) are also fulfilled where

one should substitute L=P.
Now let us suppose f ¥ ker 4g ¥ Z2 PUg. Hence applying (2) we have

P p Ugf=Ug
p Pgf=Ug

p EAgf=0

and therefore EAgf=0, g ¥ Z2. Now the property (iii) and the Doob mar-
tingale convergence theorem say that f=0, i.e., (c) is satisfied.
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In order to check (d) it is enough to assume that m=0.
For any f ¥ L2(X, m) we have by (1)

||U (0, n)
p W (0, n)f − U (1, −n)

p W(1, −n)f||

=||Un
S p EA

p U−n
S f − UT p U−n

S p EA
p U−1

T p Un
Sf||

=||ES− nAf − ET− 1SnAf||, n \ 1.

Applying (iiŒ) and the Doob theorem mentioned above we get (d).
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